Performance of Precoded Integer-Forcing for Closed-Loop MIMO Multicast

Elad Domanovitz and Uri Erez

Tel Aviv University, Israel

IEEE ITW 2014, November 4th

Introduction

- The Multiple-Input Multiple-Output (MIMO) Gaussian channel has been the focus of extensive research efforts.
- The MIMO Gaussian broadcast channel has also been widely studied for over a decade now.
- Private Message vs. Common Message
- Capacity is known for both cases \checkmark
- Practical scheme
- Private Message \checkmark (DPC)
- Common Message ?
\Longrightarrow Topic of this talk

Challenges for Practical MIMO Multicast

- In contrast to the single-user case, the number of data streams, constellation size and other parameters cannot be tailored to a specific user and can depend only on capacity.
- Users can have different number of antennas

- \Longrightarrow Code design for MIMO multicast is challenging.
- Goal: practical coding schemes for MIMO multicast.
- We show: challenges are successfully met via precoded integer-forcing (IF) combined with SIC.

MIMO Multicast Channel Model

- A transmitter equipped with M transmit antennas wishes to send the same message to K users.
- User i is equipped with N_{i} antennas.
- Channel matrix of user $i:\left[\mathbf{H}_{i}\right]_{N_{i} \times M}$.
- Set of channels: $\mathcal{H}=\{\mathbf{H}\}_{i=1}^{K}$.
- Received signal at user i

$$
\mathbf{y}_{i}=\mathbf{H}_{i} \mathbf{x}+\mathbf{z}
$$

- Power constraint

$$
\mathbb{E}\left(\mathbf{x}^{H} \mathbf{x}\right) \leq M \cdot \text { SNR. }
$$

- Additive noise $\mathbf{z} \sim \mathcal{C S C N}(0, \mathbf{I})$.

Closed-Loop Multicast Capacity

- Closed-Loop: CSI is available at both transmission ends.
- The multicast capacity is attained by a Gaussian vector input, where the mutual information is maximized over all covariance matrices \mathbf{Q} satisfying $\operatorname{Tr}(\mathbf{Q}) \leq M \cdot$ SNR

$$
C(\mathrm{SNR}, \mathcal{H})=\max _{\mathbf{Q}: \operatorname{Tr}(\mathbf{Q}) \leq M \cdot \mathrm{SNR}} \min _{\mathbf{H} \in \mathcal{H}} \log \operatorname{det}\left(\mathbf{I}+\mathbf{H}^{H} \mathbf{Q} \mathbf{H}\right) .
$$

- Figure of merit for assessing the performance of a scheme achieving rate $R(\mathrm{SNR}, \mathcal{H})$:

$$
\text { Efficiency }=\eta(\mathrm{SNR}, \mathcal{H})=\frac{\mathrm{R}(\mathrm{SNR}, \mathcal{H})}{\mathrm{C}(\mathrm{SNR}, \mathcal{H})}
$$

Known Practical Multicast Capacity Achieving Schemes

- There are several special cases where known linear modulation techniques achieve the multicast capacity when coupled with codes designed for a scalar AWGN channel:

Rx Ant	Tx Ant	User Num	SNR	Mod.
1	Any	2	Any	BeamForming
1	2	Any	Any	BF+Alamouti
Any	Any	Any	Very Low	BF+OSTBC
Any	Any	Any	Very High	NVD+IF
Any	Any	Moderate	Any	$?$

Precoded IF Equalization For Closed-Loop Multicast

- For SU Open-Loop, Ordentlich '13, et. al., considered:
- Rx side - Integer Forcing Equalization
- Tx side - Linear Precoding
- Showed that linear Non-Vanishing Determinant (NVD) precoder achieves the mutual information up to a constant gap for any channel.
- Open-loop scenario = limit of many users \Longrightarrow results applicable also to closed-loop.
- However, the guaranteed gap to capacity is very large \Longrightarrow not meaningful at moderate rates.
- We show that optimizing the precoder based on CSI, yields very good performance for closed-loop multicast for all SNR values.

Integer-Forcing Equalization: Review

- Consider the (SU) channel

$$
\mathbf{H}=\left[\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right]
$$

- At high SNR linear receiver front-end inverts the channel (ZF) thus resulting in noise amplification

$$
\mathbf{H}^{-1}=\left[\begin{array}{cc}
1 & -1 \\
-1 & 2
\end{array}\right] .
$$

- Can we avoid noise amplification?
- IF idea: if all streams are coded with same linear code \Longrightarrow signal at each antenna is a valid codeword.
- However, normal channels do not consist only of integers.
- Integer Forcing (IF) equalization generates an equivalent channel with integer entries.

Integer-Forcing Equalization: Review

- Information bits are fed into M encoders, each of which uses the same scalar AWGN linear code.
- Linear equalization matrix $\mathbf{B}_{\text {INT }}$ is applied, such that the resulting equivalent channel $\mathbf{A}=\mathbf{B}_{\text {INT }} \mathbf{H}$ is an integer matrix.
- In a practical implementation: computing \mathbf{A} is done via LLL (polynomial complexity) once per code block.

Integer-Forcing Equalization: Review

- Integer matrix \Longrightarrow the output of the channel (without noise) after applying a modulo operation is a valid codeword.
- We further consider a generalized version of the IF equalizer that incorporates SIC along with linear precoding at the transmitter.

IF-SIC Performance

- Using MMSE equalization the effective SNR at the m'th subchannel is $\operatorname{SNR}_{\text {eff,m }}=\left(\mathbf{a}_{m}^{T}\left(\mathbf{I}+\operatorname{SNRH}^{H} \mathbf{H}\right)^{-1} \mathbf{a}_{m}\right)^{-1}$
- The effective SNR associated with the IF scheme is

$$
\mathrm{SNR}_{\mathrm{eff}}=\min _{m=1, \ldots, M} \mathrm{SNR}_{\mathrm{eff}, \mathrm{~m}}
$$

- Achievable rate without SIC (Zhan '10): $R_{\mathrm{IF}}<M \log \left(\mathrm{SNR}_{\mathrm{eff}}\right)$
- Achievable rate with SIC (Ordentlich 13'):

$$
R_{\mathrm{IF}-\mathrm{SIC}}<M \max _{\mathbf{A}} \min _{m=1, \ldots, M} \log \left(\frac{\mathrm{SNR}}{\ell_{m, m}^{2}}\right)
$$

where \mathbf{L} is the following Choleskey decomposition

$$
\mathbf{K}_{\mathbf{z}_{\mathrm{eff}} \mathbf{z}_{\mathrm{eff}}}=\mathbf{A}\left(\mathbf{I}+\mathbf{S N R} \mathbf{H}^{T} \mathbf{H}\right)^{-1} \mathbf{A}^{T}=\mathbf{L L}^{T}
$$

Goal: Maximize Efficiency of Precoded IF-SIC

- With precoding, the resulting effective multicast channel is

$$
\mathbf{y}_{i}=\mathbf{H}_{i} \mathbf{P} \mathbf{x}+\mathbf{z}=\tilde{\mathbf{H}}_{i} \mathbf{x}+\mathbf{z}
$$

- For a given precoding matrix \mathbf{P} achievable efficiency is known.
- Precoding matrix \mathbf{P} can be written as $\mathbf{P}=\mathbf{Q}^{1 / 2} \mathbf{U}$ where $\mathbf{Q}^{1 / 2}$ is covariance shaping matrix and \mathbf{U} is a unitary matrix.
- Effective channel: $\tilde{\mathbf{H}}_{i}=\left(\mathbf{H}_{i} \mathbf{Q}^{1 / 2}\right) \mathbf{U}$.
- We take \mathbf{Q} to be the capacity achieving covariance matrix. \Longrightarrow Optimization reduces to find optimal U.
- The achievable efficiency is given by

$$
\frac{R_{\mathrm{P}-\mathrm{IF}-\mathrm{SIC}}(\mathrm{SNR}, \mathcal{H})}{C}=\frac{\max _{\mathbf{U}} \min _{\mathbf{H} \in \tilde{\mathcal{H}}} R_{\mathrm{IF}-\mathrm{SIC}}(\mathrm{SNR}, \mathbf{H})}{C} .
$$

Figure of Merit

- We assess the performance statistically where the set of channels \mathcal{H} is viewed as drawn from an ensemble of channels.
- For a given scheme, we define the outage efficiency associated with the ensemble as

$$
\eta_{x} \%(\mathrm{SNR}, M)=\max _{\psi} \operatorname{Pr}(\eta(\mathrm{SNR}, M)<\Psi)=x \%
$$

- For comparison purposes, we compare with the performance of several open-loop modulation methods:
- OSTBC (which amounts to Alamouti modulation in case of two transmit antennas).
- Perfect code (which amounts to golden code in case of two transmit antennas) coupled with the IF-SIC receiver.

Setup

- Both the transmitter and receiver have two antennas $(2 \times 2$ MIMO channels).
- Two ensembles were considered:
- Rayleigh fading - all matrix entries are circularly-symmetric complex normal random variables and are drawn independently of each other.
- Equal WI-MI with uniform distribution on singular values - elements in this ensemble can be described as

$$
\mathbf{H}=\mathbf{V}_{1}\left[\begin{array}{cc}
\tilde{\sigma_{1}} & 0 \\
0 & \tilde{\sigma_{2}}
\end{array}\right] \mathbf{V}_{2} .
$$

- For each channel drawn from the ensemble we searched numerically for optimal \mathbf{U}.

Numerical Results - Rayleigh Fading

Figure: Outage efficiency for 2×2 channels drawn from ensemble I with outage probability of 0.001 .

Numerical Results - Equal WI-MI

Figure : Outage efficiency for 2×2 channels drawn from ensemble II with outage probability of 0.001 .

Efficiency As a Function of The Number Of Users

Figure: Channels are 2×2 matrices drawn from ensemble II with outage probability of $0.001, \mathrm{WI}-\mathrm{MI}=4$

Results With Scalar Modulo

- Thus far: assumed multi-dimensional (optimal) modulo.
- Using scalar modulo results in a loss of up to 0.254 bits per real dimension.
- Maybe worth the effort to implement high-D modulo!

Figure: Outage efficiency for 2×2 channels drawn from ensemble II with outage probability of 0.001 , where a 1-D modulo operation is performed.

